Neural Networks
Neural Networks

- Neural network is a network or circuit of neurons

- Neurons can be
 - Biological neurons
 - Artificial neurons
Biological neurons

- Building block of the brain
- Human brain contains over 10 billion neurons
- Each of them connected to several thousand neurons
- 60 trillion connections
Biological Neurons

- Individual neuron
 - Extremely simple

- Complex network of neurons
 - Process information at great rate and of extraordinary complexity
 - Exceeds “Anything” else in the world
How do we learn?

- We learn because the brain learns!

- Plasticity – Property of a neuron to change the nature and number of their connections to other neurons “in response” to events that occur.

 Strong connection between neurons \rightarrow correct solutions

 Weak connection between neurons \rightarrow incorrect solutions
Artificial Neurons

- Modeled on the biological neuron
- Used to build artificial neural networks
- Invented by McCulloch and Pitts in 1943
- Currently smaller in terms on number and connections when compared to biological neurons
Working of Artificial Neurons

- Each Neuron (or node) receives a lot of input
- Inputs can have different weights
- A function called as activation function is applied to these input values
- The combination of the inputs on the activation function results in activation level
- Activation level is the output of the neuron
Activation function – Step function

- X-axis - combination of inputs (weighted sum)
- Y-axis - Activation level
- Activation level is chosen by comparing the input to a threshold
Other activation functions

- Sigmoid function
- Linear function
Working of Artificial Neurons

- Output of one neuron serve as input to other neurons
- No central controlling mechanism
- There will be a time lag between input and output due to the passing of information from one neuron to another
- Parallel nature of human brain enables it to calculate quickly
Perceptrons

- A simple neuron that is used to classify its inputs into one of two categories
 - Yes or No
 - True or False
- Perceptron can have any number of inputs
- Input can be arranged in a grid
 - Image
 - Field of vision
- Used for image classification or recognition tasks
Learning of a perceptron

- Inputs are assigned random weights between -0.5 and 0.5
- Training data is given and output is observed
 - Incorrect output \rightarrow Weights are adjusted
- Function for modification
 $$ w_i \leftarrow w_i + (a \times x_i \times e) $$
 a – learning rate (0 < a < 1)
 e – error produced
- Each iteration is known as a epoch
Limitation of Perceptron

- Can only learn functions that are linearly separable
- A linearly separable function – a function that can be drawn in a two dimensional graph and a single straight line can be drawn to classify values
Multilayer neural networks

- Solve problem that are not linearly separable
- Combine layers of Perceptrons
- Feed forward network consists of input layer, hidden layer and output layer
Backpropagation

- Multilayer networks learn in the same way as single perceptron – Just more weights to alter
- Use sigmoid function instead of step function
- Weights are normally distributed over the range \(-2.4/n\) to \(2.4/n\), \(n\) \(\rightarrow\) number of inputs in the layer
- First phase – Data is fed from input to output
- Second phase – Feeding back error from output to input
Backpropagation

- Algorithm is iterated till the error values are sufficiently small
- Inefficient and too slow to model real-world problems
- Does human brain use this? NO
Improving Backpropagation

- Improve performance by including a value called as momentum in the formula to modify the weights (generalized delta rule)
- Momentum takes into account the extent to which the weight was changed in previous iteration
- Avoids local minima and move quickly through areas where the error space is not changing
Improving Backpropagation

- Alternative method to improve is to use hyperbolic tangent function instead of sigmoid function.
- Another alternative is to change the learning rate during the course of training the network.
- By combining the above with the generalized data rule the performance of backpropagation can be improved.
Recurrent Networks

- Feed forward networks
 - acyclic (no cycles in network)
 - Once trained their state is fixed
 - Doesn’t alter when new data is presented
- Recurrent networks
 - Arbitrary connection between any nodes
 - Internal state is altered when new data is given
 - Basically it has memory
Recurrent Networks

- Learning – Feeds its inputs through the network, including feeding back data from outputs to inputs and repeats the process until the values of output do not change. (equilibrium or stability state)
- The stable values of the network (known as fundamental memories) are output values used as response to the input received.
- Once trained, for any given input it will output the closest attractor to it.
The activation function used is sign activation function

\[\text{Sign}(X) = \begin{cases} +1 & \text{for } X > 0 \\ -1 & \text{for } X < 0 \end{cases} \]

The weights of the network are represented by a matrix \(W \), which is calculated as,

\[W = \sum_{i=1}^{N} X_i X_i^t - N I \]
Recurrent Networks - Hopsfield Networks

- First stage – Train the network to learn the attractor states (memorization state)
- Second stage – Checking the network by giving attractors as input
- Third stage – Using the network (getting data from memory)
Recurrent Networks – Bidirectional associative memory

- Similar to Hopsfield
- Used to associate items from one set to items in another set
- Extremely useful but its capabilities and limitations are currently not fully understood
Unsupervised learning algorithms

- These algorithms learn to classify without being presented any preclassified training data
- Kohonen Maps
- Hebbian learning
Kohonen Maps

- Winner-take-all algorithm
 - Only one neuron provides the output
 - The neuron which has highest activation level
- Two layers
 - Input layer
 - Cluster layer (output layer)
- Each input layer node is connected to every output layer node
Hebbian learning

- Based on Hebb’s law which was stated by D.O. Hebb in 1949.
- If two neurons connected to each other fire at same time, the weight of the connection between them is increased.
- Conversely, if those neurons fire at different times, the weight of the connection between them is decreased.
- Example: Parlov’s experiment – Dog ➔ Bell and food
That’s it!