Abstract
1-2 paragraphs

1 Introduction

1.1 Problem
Write a few paragraphs focused on the problem (not the solution approach), its importance, and the impact of not having a solution.

When picking a research topic for a dissertation or a thesis judge the topic by answering the following three questions.

- Is the research significant?
- Is the research original?
- Is the research doable (capable of being done)?

1.2 Literature Review
Develop the background. This section should be 1-2 pages on what other researchers or developers have accomplished in this project area including references. There should be approximately 10 references from journals and conferences listed. There should be very few books referenced.

1.3 Objective
State the objective of this project and the rationale in 1 to 2 sentences.

2 Method
Tell the reader what you plan to do and how you will accomplish it. It should be 1 to 2 pages. It should include a list of tasks and a schedule as shown below.

2.1 Tasks
1. Understand/gain background …
2. Simulate given scenario
3. Design new experiment
4. Implementation it
5. Test it
6. Demonstrate it
7. Document it

2.2 Schedule
1. Understanding: 8/15/04 – 8/31/04
2. Design: 9/1/04 – 9/15/04
3. Implement: 9/16/04 – 9/30/04
4. Test: 10/1/04 – 10/15/04
5. Demonstrate: 10/16/04 – 10/31/04

3 Deliverables
A M.S. thesis or project may be the end of a student’s graduate program, but it is an intermediate step in research for the faculty advisor. A student should understand that the finished project many times is handed off to another student to extend. Therefore, any code generated should be available in one directory and documented so that a new student can begin. The preferred directory structure is to have one directory and under that directory should be a “readme.txt” file and the subdirectories /bin, /obj, /src, /docs, /data, etc. The “readme.txt” should introduce the code and give the directory structure. In addition, a Makefile for compiling is required. The /docs directory should contain an “install.txt” file explaining out to install the code and a “user_guide.txt” on how to use the code. It should also include the final report in IEEE Proceedings format and the final PowerPoint presentation. The PowerPoint presentation should contain a flow diagram of the program.

• Code and data in one directory
• Final report in IEEE Proceedings format
• PowerPoint presentation

4 Key Personnel
Student – student name – Lastname is a junior/senior/graduate student in the Computer Science and Computer Engineering Department at the University of Arkansas. She/He has completed relevant courses. Optionally, any relevant experience.

Mentor - Dr. Dale R. Thompson – Dale R. Thompson is an Assistant Professor at the University of Arkansas in Fayetteville, AR. He received his B.S. and M.S. degrees in Electrical Engineering from Mississippi State University in 1990 and 1992, respectively. He received his Ph.D. in Electrical Engineering from North Carolina State University in 2000. He worked as an Electronics Engineer in the communications group at the U.S. Army Engineer Research and Development Center in Vicksburg, MS from 1992 to 2000. He has been with the Department of
Computer Science and Computer Engineering at the University of Arkansas since 2000. Dr. Thompson’s research interests are network design, survivable networks, and grid computing.

5 References


